Paper 3

Questions are applicable for both core and extended candidates

- 1 Sulfur is an element in Group VI of the Periodic Table.
 - (e) Sulfur dioxide is formed when sulfur burns in air.
 - (vi) Sulfur dioxide reacts with oxygen in the presence of a catalyst to form sulfur trioxide. This is a reversible reaction.

Complete the equation for this reaction by writing the sign for a reversible reaction in the box.

$$2SO_2 + O_2$$
 $2SO_3$ [1]

2(b) Cobalt(II) chloride can be used to test for the presence of water.

$$CoCl_2 + 6H_2O \rightleftharpoons CoCl_2 \cdot 6H_2O$$

anhydrous hydrated cobalt(II) chloride cobalt(II) chloride

(i) State the meaning of the symbol \rightleftharpoons .

.....[1]

- **3** This question is about zinc and compounds of zinc.
 - (d) Zinc chloride reacts with water as shown. The solution formed is acidic.

$$ZnCl_2 + 2H_2O \rightleftharpoons Zn(OH)_2 + 2HCl$$

(i) State the meaning of the symbol \rightleftharpoons .

.....[1]

Paper 4

Questions are applicable for both core and extended candidates unless indicated in the question

4	The equation for the reaction between methanoic acid and ethanol in the presence of a catalyst can
	be represented as shown.

HCOOH +
$$CH_3CH_2OH \rightleftharpoons X + H_2O$$
 $\Delta H = -29.5 \, kJ/mol$ X represents the ester formed.

(c) The reaction is reversible and reaches an equilibrium within a closed system.

(i) State what is meant by the term closed system.

(extended only)

[1]

(ii) State two characteristics of an equilibrium. (extended only)

(iii) Complete Table 4.1 to show the effect, if any, on the concentration of **X** at equilibrium for each change of condition. (extended only)

Table 4.1

change of condition	effect on the concentration of X at equilibrium
temperature is decreased	
concentration of HCOOH is decreased	
concentrations of both HCOOH and CH ₃ CH ₂ OH are decreased	
the catalyst is removed	

[2]

5

The	e Hal	per process is used to ma	anufacture ammo	onia.			
(a)	Sta	te the main source of eac	ch gas used in th	e Haber pr	ocess.	(extended only))
	nitro	ogen					
	hyd	rogen					
	,						[2]
/L-\	T L .						
(D)	ine	equation for the Haber រ					
		I	$N_2(g) + 3H_2(g) =$	\rightleftharpoons 2NH ₃ (g) ∆ <i>H</i> =	= –92 kJ/mol	
	The	reaction is reversible. The	he forward reacti	on is exoth	ermic.		
	(i)	State what is meant by	the symbol ΔH .	(extende	d only)		
							[1]
	(ii)	ΔH for the forward react	ion is –92 kJ/mo	l.			
	()				a io ovotho	ermic. (extende	nd only)
		State why this value sho				•	
							[1]
	(iii)	State the typical condition	ons and name the	•		Haber process.	
		temperature	°C	(extende	ed only)		
		pressure	kPa				
		catalyst					
		·					[3]
	(iv)	Complete Table 3.1 to					
		process are changed. U	ise only the word	s increase	s, decrea	ses or no change	₽.
			Table 3	.1		(extend	led only)
		change to	effect on the ra		effect on th	e concentration	
		typical conditions	the forward rea	action	of NH ₃ (g)	at equilibrium	-
		temperature increases	increases	8			
		pressure decreases					
		no catalyst	decrease	s			

(v)	Explain in terms of collision theory why increasing the temperature increases the rate of the reaction.					
	[3]					

6

This que	estion is about sulfur and compounds of sulfur.	
Sulfur is	s converted into sulfuric acid, H ₂ SO ₄ , by the Contact process.	
The pro	cess involves four stages.	
stage 1	Molten sulfur is converted into sulfur dioxide.	
stage 2	Sulfur dioxide reacts with oxygen to form sulfur trioxide.	
stage 3	Sulfur trioxide combines with concentrated sulfuric acid to form oleum, $H_2S_2O_7$.	
stage 4	Oleum reacts to form concentrated sulfuric acid.	
(a) (i)	In stage 1 , iron pyrites, FeS ₂ , can be used instead of molten sulfur. The iron pyrites is heated strongly in air.	
	Balance the equation for the reaction occurring when iron pyrites reacts with oxygen in the air.	าe
	$FeS_2 +O_2 \rightarrowFe_2O_3 +SO_2$	[1]
(ii)	Name Fe ₂ O ₃ . Include the oxidation number of iron.	
		1
(b) The	e equation for stage 2 is shown.	
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	
	e forward reaction is exothermic. e reaction is carried out at a temperature of 450 °C and a pressure of 2 atm.	
Usi	ng explanations that do not involve cost:	
(i)	explain why a temperature greater than 450 °C is not used (extended only)	
(ii)	explain why a pressure lower than 2 atm is not used. (extended only)	1

7	This	s question is about compounds of sulfur.
	(a)	Sulfuric acid, H_2SO_4 , is manufactured using the Contact process. This manufacture involves four stages.

ioui	Stage	55.	
sta	ge 1	Molten sulfur burns in air to produce sulfur dioxide.	
sta	ge 2	Sulfur dioxide reacts with oxygen to form sulfur trioxide.	
sta	ge 3	Sulfur trioxide combines with concentrated sulfuric acid to form oleum, H ₂ S ₂ O ₇ .	
sta	ge 4	Oleum reacts to form concentrated sulfuric acid.	
(i)	Write	a chemical equation for the reaction occurring in stage 1. (extended only)	
		[1]
(ii)		the essential conditions that are necessary for stage 2 . Write an equation for the ical reaction that occurs. (extended only))
		[4]
(iii)	Write	a chemical equation for the reaction occurring in stage 3. (extended only)	
		[1]
(iv)	Name	e the substance that reacts with oleum in stage 4. (extended only)	
		[1]

[2]

8

	CH ₃	$OH(g) + CO(g) \rightleftharpoons CH_3CO$	OH(g)	
(a)	State two characteristics of	f an equilibrium. (extende d	d only)	
	1			
	2			[2]
b)	The purpose of the industr of reaction.	ial process is to produce a hi	gh yield of ethanoic acid at a h	igh rate
	The manufacture is carried	out at a temperature of 300	°C.	
	The forward reaction is exc	othermic.		
	Use this information to stat	e why the manufacture is no	t carried out at temperatures:	
	• below 300 °C (ext	ended only)		
				[2
c)	Complete the table using o	only the words <i>increases</i> , <i>dec</i>	ereases or no change. (extend	
c)	Complete the table using o	enly the words <i>increases, dec</i> effect on the rate of the forward reaction	ereases or no change. (extended) effect on the equilibrium yield of CH ₃ COOH(g)	
c)	Complete the table using of adding a catalyst	effect on the rate of	effect on the equilibrium	[2
c)		effect on the rate of	effect on the equilibrium yield of CH ₃ COOH(g)	
(c)	adding a catalyst decreasing the pressure	effect on the rate of the forward reaction	effect on the equilibrium yield of CH ₃ COOH(g)	led on

shown.

	$N_2 + 3H_2 \rightleftharpoons 2NH_3$
(a)	Name the industrial process used to make ammonia. (extended only)
	[1]
(I-)	State the raw material from which nitrogen is obtained. (extended only)
(D)	
	[1]
(c)	State what is meant by the symbol ← .
	[1]
(d)	State the temperature and pressure used in this industrial process. (extended only)
(a)	
	temperature =°C
	pressure = atm [2]
(-)	Name the catalyst used in this industrial process (extended only)
(e)	The me success with the massing process.
	[1]
(f)	The forward reaction is exothermic.
	State the effect, if any, on the position of the equilibrium when the following changes are made. Explain your answers. (extended only)
	temperature is reduced
	pressure is reduced

Ammonia is made in an industrial process starting with nitrogen. The equation for the reaction is

(g)	Explain, in terms of particles, what happens to the rate of reaction when the temperature is reduced.
	[3]
(h)	Give the formula of the compound formed when sulfuric acid reacts with ammonia.
	[1]
	[Total: 14]

10	. ,	lydrated copper(II) sulfate is a coloured compound. It exists as hydrated crystals w ntain water molecules.	vhich
	(i)	State the term given to water molecules present in hydrated crystals.	
			[1]
	(ii)	State the colour of hydrated copper(II) sulfate crystals.	
			[1]
	(iii)	Write the formula of hydrated copper(II) sulfate.	
			[2]